Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}$ |
| $\mathrm{Cu}(1)$ | 0 | 0 | 0 | $2 \cdot 12(2)$ |
| $\mathrm{Ni}(1)$ | 5000 | 5000 | 5000 | $1 \cdot 96(2)$ |
| $\mathrm{N}(1)$ | $-898(5)$ | $-2645(5)$ | $526(4)$ | $2 \cdot 67(9)$ |
| $\mathrm{N}(2)$ | $-1604(5)$ | $923(5)$ | $2057(4)$ | $2 \cdot 81(10)$ |
| $\mathrm{N}(3)$ | $3520(6)$ | $1081(5)$ | $2048(5)$ | $3 \cdot 38(10)$ |
| $\mathrm{N}(4)$ | $1617(6)$ | $6152(6)$ | $3252(5)$ | $3 \cdot 85(13)$ |
| $\mathrm{C}(1)$ | $-2698(7)$ | $-2654(7)$ | $1622(6)$ | $3 \cdot 67(13)$ |
| $\mathrm{C}(2)$ | $-2139(8)$ | $-607(7)$ | $2975(6)$ | $3 \cdot 85(15)$ |
| $\mathrm{C}(3)$ | $4101(6)$ | $2539(6)$ | $3188(5)$ | $2 \cdot 51(11)$ |
| $\mathrm{C}(4)$ | $2882(6)$ | $5754(6)$ | $3960(5)$ | $2 \cdot 65(12)$ |

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

| $\mathrm{Cu}(1)-\mathrm{N}(1)$ | $1.997(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(3)$ | $1.850(4)$ |
| :--- | :---: | :--- | ---: | ---: |
| $\mathrm{Cu}(1)-\mathrm{N}(2)$ | $2.001(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(4)$ | $1.864(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.465(6)$ | $\mathrm{C}(3)-\mathrm{N}(3)$ | $1.123(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.487(7)$ | $\mathrm{C}(4)-\mathrm{N}(4)$ | $1.125(6)$ |
| $\mathrm{C}(2)-\mathrm{N}(2)$ | $1.455(6)$ |  |  |
| $\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$ | $84.6(1)$ | $\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$ | $108.7(4)$ |
| $\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $107.9(3)$ | $\mathrm{C}(3)-\mathrm{Ni}(1)-\mathrm{C}(4)$ | $88.1(2)$ |
| $\mathrm{Cu}(1)-\mathrm{N}(2)-\mathrm{C}(2)$ | $108.7(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(3)-\mathrm{N}(3)$ | $177.2(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $107.3(4)$ | $\mathrm{Ni}(1)-\mathrm{C}(4)-\mathrm{N}(4)$ | $176.6(4)$ |

distances and angles in Table 2. A stereoview of the structure and the numbering scheme is given in Fig. 1.

Related literature. Following the report (Williams, Larson \& Cromer, 1972) that the mixed-valence copper cyanide ethylenediamine complex, $\mathrm{Cu}_{2}^{\mathrm{I}}(\mathrm{CN})_{4}{ }^{-}$ $\mathrm{Cu}^{\mathrm{II}}(\mathrm{en})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (II), forms a three-dimensional network in the solid state, we attempted to prepare a


Fig. 1. A perspective view of the cation and anion and the numbering of the atoms.
$\mathrm{C}_{6} \mathrm{H}_{6}$ (or $\mathrm{C}_{6} \mathrm{D}_{6}$ ) clathrate of the stoichiometrically related system $\mathrm{Ni}(\mathrm{CN})_{4}-\mathrm{Cu}(\mathrm{en})_{2}$. However, as revealed by this crystal-structure determination, the replacement of the $\left[\mathrm{Cu}_{2}^{\mathrm{I}}(\mathrm{CN})_{4}\right]^{2-}$ by $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{CN})_{4}\right]^{2-}$ anion causes a conversion of the three-dimensional framework into a chain structure. Consequently, in contrast to (II), there is no hole formation in the present structure (I) and, as a result, no clathrate formation was observed.

## References

NRC (1973). Crystallographic Programs for the IBM360 System. Accession Nos. 133-147. J. Appl. Cryst. 6, 309-346.
PavelČík, F. (1986). J. Appl. Cryst. 19, 488-491.
Williams, R. J., Larson, A. C. \& Cromer, D. T. (1972). Acta Cryst. B28, 858-864.

Acta Cryst. (1991). C47, 2448-2451

# Structure of Tetracarbonyl[3,6-bis(pyridin-2-yl)-2,5-dihydro-1,2,4,5-tetrazine]tungsten(0) 

By Ronald Hage, Rudolf A. G. de Graaff and Jaap G. Haasnoot<br>Department of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

and Graham Russell, Conor Long and Johannes G. Vos*<br>School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

(Received 6 November 1990; accepted 5 June 1991)

| Abstract. $\left[\mathrm{W}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right], \quad M_{r}=534 \cdot 14$, mono- |
| :--- |
| clinic |
| $22_{1} / c, \quad a=15.327(2), \quad b=13.993(2), c=$ | clinic, $\quad P 2_{1} / c, \quad a=15 \cdot 327$ (2),$\quad b=13.993$ (2), $\quad c=$

[^0]0108-2701/91/112448-04\$03.00
18.526 (2) $\AA, \beta=114.00$ (1) ${ }^{\circ}, V=3629.7$ (9) $\AA^{3}, Z=$ $8, D_{x}=1.95 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $6.535 \mathrm{~mm}^{-1}, F(000)=2032, T=298 \mathrm{~K}, R(w R)=$ 0.023 ( 0.030 ) for 5538 unique observed reflections [ $I$
© 1991 International Union of Crystallography
$>2 \sigma(l)]$. The unit cell contains two independent molecules, in each molecule the bis(pyridyl)tetrazine ligand ( $\mathrm{H}_{2} \mathrm{bptz}$ ) is coordinated via one pyridine N and one imidic N atom of the dihydrotetrazine to the W atom at distances of $2 \cdot 248$ (3) and 2.209 (3) $\AA$ respectively for one molecule and $2 \cdot 243$ (3) and $2 \cdot 205$ (3) $\AA$ for the other molecule. The four carbonyl ligands are bound to tungsten with distances W-C 1.953 (5), 1.951 (4), 2.020 (6) and 2.049 (5) $\AA$ for the first molecule and 1.948 (5), 1.947 (5), 2.027 (6) and 2.023 (7) $\AA$ for the second molecule.

Experimental. Red crystals of $\left[W\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right]$ were obtained by irradiating (tungsten lamp) a solution of $\left[\mathrm{W}(\mathrm{CO})_{6}\right.$ ] and $\mathrm{H}_{2} \mathrm{bptz}$. A rod-shaped single crystal was selected for the structure determination. Experimental data and refinement details are shown in Table 1. X-ray intensity data were collected by using graphite-monochromated Mo $K \alpha$ radiation. Cell constants were determined from setting angles of 24 reflections ( $10 \leq \theta \leq 12^{\circ}$ ). Lorentz and polarization corrections were performed using local program systems. The structure was solved by using standard Patterson techniques and refined using fullmatrix least-squares refinement based on $F$ with weights $w=1 / \sigma^{2}(F)$. No corrections for absorption have been carried out. The non-H atoms were refined anisotropically. H atoms were placed in calculated positions and refined isotropically coupled with the adjacent $\mathbf{C}$ atoms. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). The programs used were written or modified by Mrs E. W. Rutten-Keulemans and Dr R. A. G. de Graaff.

Atom coordinates and equivalent isotropic thermal parameters for the non-H atoms are shown in Table 2.* Fig. 1 shows a projection of the molecule with the atomic numbering scheme; Fig. 2 depicts the unit cell in stereo projection. Relevant bond distances and angles are presented in Table 3.

Related literature. The chemistry and physical properties of metal complexes containing bridging ligands (Creutz \& Taube, 1973) are generally investigated in order to measure the interaction between the mononuclear components in the ligand-bridged species across what is usually a highly conjugated ligand. We are currently interested in the synthesis of a range of novel ligand-bridged compounds (see e.g. Creaven, Grevels \& Long, 1989; Creaven, Long,

[^1]Table 1. Experimental data for $\left[\mathrm{W}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right]$

| Diffractometer | Enraf-Nonius CAD-4 |
| :---: | :---: |
| Crystal dimensions (mm) | $0.2 \times 0.2 \times 0.3$ |
| Transmission factor range | 0.96-1.03 |
| Temperature | 298 K |
| Scan method | $\omega / 2 \theta$ |
| $\theta$ range ( ${ }^{\circ}$ ) | 2-30 |
| Standard reflections | 4,7,10, 872 , 913 |
| Number of reflections measured | 10923 |
| Number of independent reflections | 10565 |
| Number of observed unique reflections $[I>2 \sigma(I)]$ | 5538 |
| $R_{\text {int }}$ | 0.046 |
| $h k l$ range | 0 to 21,0 to 19, - 26 to 26 |
| Number of parameters refined | 567 |
| $R$ | 0.023 |
| $w R$ | 0.030 |
| Weighting scheme | $1 / \sigma^{2}(F)$ |
| $(\Delta / \sigma)_{\text {max }}$ | 0.004 |
| $S$ (goodness of fit) | 0.89 |
| $\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 1.37/-0.57 |

Howie \& McQuillan, 1989). This study was extended to systems containing 3,6 -bis(pyridin-2-yl)-2,5-dihydro-1,2,4,5-tetrazine ( $\mathrm{H}_{2} \mathrm{bptz}$ ), because this ligand offers the possibility of coordination as a simple chelating ligand, as a bridging chelating ligand and also as a bridging monodentate ligand. It is possible to prepare complexes of this ligand with metal carbonyl fragments under mild conditions, usually photochemically, and thus isolate thermally labile compounds which could be inaccessible by thermal routes. Tetracarbonyl[3,6-bis(pyridin-2-yl)-2,5-dihydro-1,2,4,5-tetrazine]tungsten(0) was synthesized as a preliminary investigation into the various coordination modes of this ligand. This work describes the first structural determination of a complex containing this ligand, the structural features of which may assist a more complete understanding of the excited-state properties of the related $\mu$-[3,6-bis-(pyridin-2-yl)-1,2,4,5-tetrazine]-bis[tetracarbonyltungsten(0)] compound reported previously (Kaim \& Kohlmann, 1986, 1987).
The W atom appears to have an octahedral coordination. The W-CO distances of the carbon monoxide ligands trans to the $\mathrm{H}_{2}$ bptz N atoms are about $0 \cdot 1 \AA$ longer than the $\mathrm{W}-\mathrm{CO}$ distances of the CO molecules perpendicular to the $\mathrm{H}_{2} \mathrm{bptz}$ ligand (Table 3). This is caused by the influence of the $\mathrm{H}_{2}$ bptz ligand, which has $\sigma$-donor and $\pi$-acceptor properties different from those of the CO ligands. The observed metal-carbon and metal-nitrogen distances are similar to those reported for $M(\mathrm{CO})_{4}$ complexes containing 6 - $p$-styryl-2, $2^{\prime}$-bipyridine (Long, Vos, Howie \& Kelly, 1984). The $\mathrm{H}_{2}$ bptz ligand is non-planar, which is the result of the partly saturated character of the central six-membered ring. Two H atoms are bound to $\mathrm{N}(123)$ and $\mathrm{N}(126)$ of $\mathrm{H}_{2}$ bptz. Stacking between the molecules is not observed and it is assumed that the molecules are held together by van der Waals forces. The shortest intermolecular

Table 2. Fractional atomic coordinates with e.s.d.'s in parentheses and isotropic thermal parameters for the non -H atoms of $\left[\mathrm{W}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right]$

| $B_{\text {cq }}=\left(8 \pi^{2} / 3\right)$ trace $\mathbf{U}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| w(1) | 0.78340 (1) | 0.03369 (1) | -0.02045 (1) | 2.789 (5) |
| w(2) | 0.73259 (1) | -0.45258 (1) | 0.01058 (1) | 3.003 (4) |
| C(11) | 0.7877 (3) | 0.0916 (4) | 0.0768 (3) | 3.96 (13) |
| O(11) | 0.7878 (3) | 0.1226 (3) | 0.1346 (2) | $6 \cdot 37$ (14) |
| C(12) | 0.9101 (3) | -0.0175 (3) | 0.0429 (3) | $3 \cdot 41$ (11) |
| $\mathrm{O}(12)$ | 0.9857 (3) | -0.0454 (2) | 0.0818 (2) | $4 \cdot 83$ (10) |
| C(13) | 0.7273 (4) | -0.0805 (4) | 0.0122 (3) | $4 \cdot 43$ (14) |
| $\mathrm{O}(13)$ | 0.7014 (3) | -0.1421 (3) | 0.0389 (2) | 7.19 (15) |
| $\mathrm{C}(14)$ | 0.8529 (4) | 0.1517 (4) | -0.0361 (3) | 4.25 (14) |
| $\mathrm{O}(14)$ | 0.8954 (3) | 0.2166 (3) | -0.0386 (3) | 7.27 (15) |
| $\mathrm{C}(21)$ | 0.7114 (3) | -0.3501 (4) | -0.0660 (3) | 3.70 (13) |
| $\mathrm{O}(21)$ | 0.6995 (3) | -0.2840 (3) | -0.1077 (2) | 5.16 (11) |
| C(22) | 0.6234 (4) | -0.5228 (4) | -0.0638 (3) | $4 \cdot 22$ (14) |
| $\mathrm{O}(22)$ | 0.5574 (3) | -0.5635 (3) | -0.1084 (2) | $6 \cdot 10$ (13) |
| C(23) | 0.6350 (3) | -0.3823 (4) | 0.0387 (3) | $4 \cdot 39$ (14) |
| O(23) | 0.5742 (3) | -0.3422 (4) | 0.0448 (2) | 7.09 (15) |
| C(24) | 0.8122 (4) | -0.5225 (4) | -0.0369 (3) | $4 \cdot 9$ (2) |
| $\mathrm{O}(24)$ | 0.8501 (4) | -0.5628 (3) | -0.0702 (3) | 8.7 (2) |
| $\mathrm{N}(111)$ | 0.6426 (3) | 0.0904 (3) | -0.1074 (2) | 3.24 (9) |
| $\mathrm{C}(112)$ | 0.6118 (3) | 0.0613 (3) | -0.1835 (2) | $3 \cdot 10$ (11) |
| C(113) | 0.5279 (3) | 0.0952 (4) | -0.2413 (3) | 4.26 (13) |
| C(114) | 0.4743 (4) | 0.1601 (4) | -0.2204 (3) | $5 \cdot 5$ (2) |
| C(115) | 0.5054 (4) | 0.1894 (4) | -0.1434 (3) | $5 \cdot 6$ (2) |
| $\mathrm{C}(116)$ | 0.5887 (3) | 0.1534 (4) | -0.0887 (3) | 4.42 (14) |
| $\mathrm{N}(121)$ | 0.7546 (3) | -0.0246 (2) | -0.1388 (2) | 2.72 (8) |
| C(122) | 0.6760 (3) | -0.0058 (3) | -0.1980 (2) | 2.80 (10) |
| $\mathrm{N}(123)$ | 0.6558 (3) | -0.0461 (2) | -0.2710 (2) | 3.33 (10) |
| $\mathrm{N}(124)$ | 0.6898 (3) | -0.1413 (2) | -0.2691 (2) | 3.29 (10) |
| C (125) | 0.7701 (3) | -0.1558 (3) | -0.2123 (2) | 2.89 (10) |
| $\mathrm{N}(126)$ | 0.8177 (3) | -0.0848 (3) | -0.1568 (2) | 3.18 (9) |
| $\mathrm{N}(131)$ | 0.8951 (3) | -0.2538 (3) | -0.1331 (2) | $4 \cdot 48$ (12) |
| $\mathrm{C}(132)$ | 0.8196 (3) | -0.2487 (3) | -0.2010 (3) | $3 \cdot 66$ (13) |
| C(133) | 0.7888 (4) | -0.3187 (4) | -0.2584 (3) | 4.75 (75) |
| C(134) | 0.8395 (5) | -0.4044 (4) | -0.2416 (4) | 6.7 (2) |
| C(135) | 0.9157 (5) | -0.4142 (4) | -0.1719 (4) | 6.3 (2) |
| $\mathrm{C}(136)$ | 0.9418 (5) | -0.3408 (4) | -0.1195 (4) | 6.0 (2) |
| N (211) | 0.8583 (3) | -0.3851 (3) | 0.1080 (2) | $3 \cdot 24$ (9) |
| C(212) | 0.8931 (3) | -0.4278 (3) | 0.1793 (2) | 2.92 (10) |
| C(213) | 0.9681 (3) | -0.3905 (4) | 0.2436 (3) | 3.54 (12) |
| C(214) | 1.0094 (3) | -0.3065 (4) | 0.2348 (3) | 4.29 (14) |
| $\mathrm{C}(215)$ | 0.9754 (4) | -0.2632 (4) | 0.1618 (3) | $4 \cdot 90$ (15) |
| C(216) | 0.8996 (3) | -0.3034 (4) | 0.1002 (3) | 4.39 (14) |
| $\mathrm{N}(221)$ | 0.7808 (3) | -0.5469 (2) | $0 \cdot 1149$ (2) | 3.17 (9) |
| C(222) | 0.8475 (3) | -0.5198 (3) | 0.1799 (2) | 2.87 (10) |
| $\mathrm{N}(223)$ | 0.8803 (3) | -0.5790 (2) | 0.2457 (2) | 3.50 (10) |
| N(224) | 0.8106 (3) | -0.6400 (2) | 0.2539 (2) | 3.24 (9) |
| C(225) | 0.7475 (3) | -0.6682 (3) | 0.1884 (2) | 3.11 (11) |
| N(226) | 0.7477 (3) | -0.6405 (2) | 0.1159 (2) | 3.72 (11) |
| N(231) | 0.6000 (3) | -0.7412 (3) | 0.1150 (3) | 5.39 (14) |
| C(232) | 0.6728 (3) | -0.7358 (3) | 0.1848 (3) | 3.74 (13) |
| C(233) | 0.6817 (5) | -0.7900 (4) | 0.2497 (3) | 5.6 (2) |
| C(234) | 0.6085 (5) | -0.8534 (5) | 0.2394 (4) | 8.6 (3) |
| C(235) | 0.5328 (5) | -0.8597 (6) | 0.1687 (4) | 9.6 (3) |
| C 236 ) | 0.5306 (5) | -0.8023 (5) | 0.1084 | 8.1 (2) |

distance of $2.77 \AA$ is between $\mathrm{H}(133)$ and $\mathrm{O}(13)$ of two different molecules.

We are indebted to Mr S. Gorter, Leiden University, for collecting the X-ray data set. Professor Dr J. Reedijk and Mr J. H. van Hal are thanked for many useful discussions and for critically reading this manuscript.

Table 3. Selected bond distances ( $\AA$ ) and bond angles $\left({ }^{\circ}\right)$ involving non- H atoms of [ $\left.\mathrm{W}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right]$


Fig. 1. Structure of $\left[W\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right]$. Thermal ellipsoids are shown at $50 \%$ probability. H atoms have been omitted for clarity.


Fig. 2. Stereoscopic projection showing the packing in the unit cell. $z$ is horizontal, $x$ is vertical and $y$ is in the plane of the paper.

## References

Creaven, B. S., Grevels, F. W. \& Long, C. (1989). Inorg. Chem. 28, 2231-2234.
Creaven, B. S., Long, C., Howie, R. A. \& McQuillan, G. P. (1989). Inorg. Chim. Acta, 157, 151-152.

Creutz, C. \& Taube, H. (1973). J. Am. Chem. Soc. 95, 1086-1094.

Howie, R. A., Izquerdo, G. \& McQuillan, G. P. (1983). Inorg. Chim. Acta, 72, 165-172.
Kaim, W. \& Kohlmann, S. (1986). Inorg. Chem. 25, 33063310.

Kaim, W. \& Kohlmann, S. (1987). Inorg. Chem. 26, 6877.
long, C., Vos, J. G., Howie, R. A. \& Kelly, J. M. (1984). J. Organomet. Chem. 272, 385-390.

# Structure of Acetamidine(bromo)bis( $\boldsymbol{\eta}^{\mathbf{5}}$-cyclopentadienyl)tungsten(IV) Hexaflurophosphate, $\left[\mathrm{W}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \operatorname{Br}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 

By Maria A. A. F. de C. T. Carrondo and Vitor Félix<br>Centro de Tecnologia Quimica e Biológica and Instituto Superior Técnico, $R$ da Quinta Grande 6, 2780 Oeiras, Portugal

## (Received 9 April 1991; accepted 31 May 1991)


#### Abstract

C}_{12} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{~W}^{+} . \mathrm{F}_{6} \mathrm{P}^{-}, M_{r}=596 \cdot 9\), orthorhombic, $\mathrm{Pbcm}, a=7.2879$ (9), $b=13.563$ (2), $c=$ $16 \cdot 661$ (2) $\AA, \quad V=1646.9$ (4) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $2.40 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha$ ) $=0.71069 \AA, \quad \mu=$ $96.62 \mathrm{~cm}^{-1}, F(000)=1120$, room temperature, $R=$ 0.042 for 1572 observed reflections with $F_{o} \geq 3 \sigma F_{o}$. The $\left[\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Br}\left(\mathrm{HNCCH}_{3} \mathrm{NH}_{2}\right)\right]^{+}$cation is disordered in Pbcm . The W atom is coordinated by two $\eta^{5}$-cyclopentadienyl rings ( Cp ), a Br and one of the N atoms of the acetamidine ligand, in a distorted tetrahedral environment. The W atom is 1.977 (1) and 2.013 (1) $\AA$ from the least-squares planes defined by the cyclopentadienyl rings with higher probability. These rings adopt an eclipsed orientation and the angle $\mathrm{Cp}-\mathrm{W}-\mathrm{Cp}$ between ring normals is $130(1)^{\circ}$. The $\mathrm{W}-\mathrm{Br}$ and $\mathrm{W}-\mathrm{N}$ bond lengths are 2.580 (6) and 2.21 (2) $\AA$ and the angle $\mathrm{N}-\mathrm{W}-\mathrm{Br}$ is 75.5 (6) ${ }^{\circ}$.


Experimental. The crystals of the title complex were prepared by C. Romão, Centro de Química Estrutural (Calhorda, Carrondo, Dias, Domingos, Duarte, Garcia \& Romão, 1987). Unit-cell parameters refined from 25 centred reflections in the range $15<\theta<18^{\circ}$. Enraf-Nonius CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation. 2744 hkl intensities were measured using $\omega-2 \theta$ scan mode, with 1.5 $\leq \theta \leq 30^{\circ}$ for one octant of the reflection sphere $h$ from 0 to $10, k$ from 0 to 18 and $l$ from 0 to 23. Two standard reflections $4 \overline{3} 8$ and $0,10,3$ monitored every 3600 s and their intensities showed no decay throughout data collection. Intensity data corrected for Lorentz and polarization effects with CAD-4 software and empirically for absorption (North, Phillips \& Mathews, 1968) (transmission factors
between 0.461 and 0.999 ). 1572 reflections with $F_{o} \geq$ $3 \sigma F_{o}$ were used in the solution and refinement of the structure. The W-atom position was found from a sharpened Patterson synthesis map and non-H-atom positions were located from subsequent difference Fourier syntheses. The Laue symmetry and systematic absences observed were consistent with space groups $P b c m$ and $P b c 2_{1}$. Initially, in agreement with crystal-density calculations, the refinement with isotropic temperature factors for non-H atoms was made in the noncentrosymmetric space group. However, the highest peaks around the metal atom could only be explained if a disordered model was considered in space group Pbcm . In this space group the unit cell contains four $\left[W\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-\right.$ $\left.\mathrm{Br}\left(\mathrm{HNCCH}_{3} \mathrm{NH}_{2}\right)\right]^{+}$cations and four $\left[\mathrm{PF}_{6}\right]^{-}$anions. In the asymmetric unit, the W and one C of each Cp ring lies on a mirror plane, while the P and two F atoms are on a twofold axis. Thus, the two equatorial ligands, Br and acetamidine have $50 \%$ probability of being on each side of that mirror plane. Futhermore, the Cp rings are also disordered with a higher probability orientation of 57 (4) for $\mathrm{Cp}_{1}$ and 71 (4)\% for $\mathrm{Cp}_{2}$ ) and a second orientation with 43 (4) for $\mathrm{Cp}_{1}$ and $29(4) \%$ for $\mathrm{Cp}_{2}$ as refined occupancies, respectively. The two orientations with higher occupancies on each side of the W atom adopt an eclipsed configuration for the Cp rings, while any other combination between these and the orientations with lower occupancy of the rings results in a staggered arrangement. The isotropic refinement of this model gave a value of $R=0.072$. The final refinements (on $F$ with unit weights), with anisotropic temperature factors for $\mathrm{W}, \mathrm{P}, \mathrm{F}$ and the atoms of the acetamidine


[^0]:    * To whom correspondence should be addressed.

[^1]:    * Lists of structure factors, anisotropic thermal parameters, full bond lengths and angles, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54323 ( 27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

